Public Document Pack

Supplement for

LOWLANDS AREA PLANNING SUB-COMMITTEE - MONDAY, 8TH JANUARY, 2024

Agenda No Item

4. Applications for Development (Pages 3 - 56)


Purpose:

To consider applications for development, details of which are set out in the attached schedule.

Recommendation:

That the applications be determined in accordance with the recommendations of the Business Manager – Development Management.

Application	Address	Planning
No.		Officer
23/00539/FUL	The Crawley Inn, Foxburrow	Clare
	Lane	Anscombe
23/02731/FUL	The Coffee Shed, The Leys	Elloise Street
23/02849/FUL	Land South West Of Chapel Lane	Esther Hill

Agenda Item 4

WEST OXFORDSHIRE DISTRICT COUNCIL LOWLANDS AREA PLANNING SUB-COMMITTEE

Date: 8th January 2024

Report of Additional Representations

Agenda Index

Please note that if you are viewing this document electronically, the agenda items below have been set up as links to the relevant application for your convenience.

23/00539/FUL	The Crawley Inn, Foxborough Lane, Crawley, Witney	3
23/02731/FUL	The Coffee Shed, The Leys, Witney	4
23/02849/FUL	Land South West Of Chapel Lane	5

Report of Additional Representations

Application Number	23/00539/FUL
Site Address	The Crawley Inn, Foxburrow Lane, Crawley, Witney
Date	5th January 2024
Officer	Clare Anscombe
Officer Recommendations	Approve subject to Legal Agreement
Parish	Crawley Parish Council
Grid Reference	434322 E 212094 N
Committee Date	8th January 2024

Additional Public Comments

3 additional objection comments have been submitted from members of the public. These are available to view in the online case file: https://publicaccess.westoxon.gov.uk/online-applications/applicationDetails.do?activeTab=documents&keyVal=RQFTVCRKIXI00 and are summarised below:

 Concerns relating to the impact on local ecology, highways, the proposed design and layout including the proximity of houses to Foxburrow Lane, increased flood risk and landscape impact.

Report of Additional Representations

Application Number	23/02731/FUL
Site Address	The Coffee Shed, The Leys, Witney
Date	5th January 2024
Officer	Elloise Street
Officer Recommendations	Approve
Parish	Witney Parish Council
Grid Reference	435485 E 209036 N
Committee Date	Committee Date 8th January 2024

Application Details:

Demolition of existing hub and erection of replacement hub and community facilities, installation of court lighting, creation of new pedestrian access, extension to existing car park, creation of changing and shower facilities from former depot facility and resurfacing of tennis courts to provide new tennis courts, MUGA and Padel courts and installation of canopies above Padel courts together with associated works (amended parking plans)

Applicant Details:

Mr Jeff Hunter Courtside Hubs CIC 20 Wheatley Business Centre Old London Road Oxford OX33 1YW

Additional Representations:

I additional comment from Witney Town Council as detailed below:

"Witney Town Council welcome the amended plans and thank the applicant for addressing the concerns relating to parking and vehicular access. The Town Council have no objection to this revised proposal."

Third Party Representations

One additional third-party comment of support has been received following the consultation period which can be viewed in full on the website. The comment as summarised states "I fully support the new facilities being proposed by Courtside and thank the developer for being willing to meet with and listen to residents"

Report of Additional Representations

Application Number	23/02849/FUL
Site Address	Land South West Of Chapel Lane Standlake Oxfordshire
Date	5th January 2024
Officer	Esther Hill
Officer Recommendations	Refuse
Parish	Standlake Parish Council
Grid Reference	439750 E 203347 N
Committee Date	8th January 2024

Application Details:

Erection of a dwelling with double garage, adapted vehicular entrance point and related landscaping

Applicant Details:

NPES Developments Ltd C/o Agent

Additional Representations:

Third Party Representations

One additional support comment has been received. In summary, the comment states that as a landowner in Chapel Lane for some years, that they do not recall any incidence of flooding within the development site.

Additional Drainage Information

In an attempt to overcome the concerns raised by the WODC Drainage Officer, a series of emails and updated documents have been submitted. The amended documents include an updated Drainage Strategy, Ground Water Monitoring and SuDS Assessment. These documents can be found within Appendix 1 of this document.

Whilst your Drainage Officers have been re consulted, the additional information was received over the Christmas period and therefore has not yet been fully assessed. The Drainage Officer has however asked for further points of clarification. Your officers would therefore suggest that members choose to either:

- 1. Determine the application as it and not accept the amended details.
- 2. Defer consideration to enable consultation and bring the application back once that has occurred.
- 3. Delegate the decision to officers to determine the application, approving if the amended details satisfy the drainage engineer, or refusing if they don't.

From: Richard White

Sent: 04 January 2024 16:40

To: Kevin Jack < Kevin. Jack@publicagroup.uk >

Subject: RE: Chapel Lane Soakage

You don't often get email fr

Good afternoon Kevin,

Thank you so much for coming back to us. It is appreciated, we know how much you have on at the moment!

The current design achieves 304mm clearance of the base of the infiltration feature and the highest recorded groundwater level (this week). The latest reading has been taken into account with the current design.

We have already raised the finished floor level. Whether or not the building can be raised again is not our area of expertise, but it is already higher than the original application. Technically, there could be some scope to raise the floor levels on-site further, as the ridge heights are higher for the houses along Woodlands. But there will be other factors at play, too and equally, we do not believe this would be necessary. We are also concerned that raising the ground more than we already have could make the site look odd compared to the surroundings. It is already higher than most of the existing properties locally.

C753 indicates that 300mm should provide sufficient depth for treatment between permeable paving and a high groundwater table, we are providing 304mm. An extract from C753 is below, see below and note 3:

TABLE	Indicative SuDS mitigation indices for discharges to gre	oundwat
26.4		

Characteristics of the material overlying the proposed infiltration surface, through which the runoff percolates¹	TSS	Metals	Hydrocarbons
A layer of dense vegetation underlain by a soil with good contaminant attenuation potential ² of at least 300 mm in depth ³	0.64	0.5	0.6
A soil with good contaminant attenuation potential ² of at least 300 mm in depth ³	0.44	0.3	0.3
Infiltration trench (where a suitable depth of filtration material is included that provides treatment, ie graded gravel with sufficient smaller particles but not single size coarse aggregate such as 20 mm gravel) underlain by a soil with good contaminant attenuation potential ² of at least 300 mm in depth ³	0.44	0.4	0.4
Constructed permeable pavement (where a suitable filtration layer is included that provides treatment, and including a geotextile at the base separating the foundation from the subgrade) underlain by a soil with good contaminant attenuation potential ² of at least 300 mm in depth ³	0.7	0.6	0.7
Bioretention underlain by a soil with good contaminant attenuation potential ² of at least 300 mm in depth ³	0.84	0.8	0.8
Proprietary treatment systems ^{5, 6}	These must demonstrate that they can address each of the contaminant types to acceptable levels for inflow concentrations relevant to the contributing drainage area.		rpes to acceptable tions relevant to the

ter

Notes

- 1 All designs must include a minimum of 1 m unsaturated depth of aquifer material between the infiltration surface and the maximum likely groundwater level (as required in infiltration design – Chapter 25).
- 2 For example as recommended in Sniffer (2008a and 2008b), Scott Wilson (2010) or other appropriate guidance.
- 3 Alternative depths may be considered where it can be demonstrated that the combination of the proposed depth and soil characteristics will provide equivalent protection to the underlying groundwater – see note 1.
- 4 If significant volumes of sediment are allowed to enter an infiltration system, there will be a high risk of rapid clogging and subsequent system failure.
- 5 See Chapter 14 for approaches to demonstrate product performance. Note: a British Water/Environment Agency assessment code of practice is currently under development that will allow manufacturers to complete an agreed test protocol for systems intended to treat contaminated surface water runoff. Full details can be found at: www.britishwater.co.uk/Publications/codes-of-practise.aspx
- 6 SEPA only considers proprietary treatment systems as appropriate in exceptional circumstances where other types of SuDS component are not practicable. Proprietary treatment systems may also be considered appropriate for existing sites that are causing pollution, where there is a requirement to retrofit treatment. WAT-RM-08 (SEPA, 2014) also provides a flowchart with a summary of checks on suitability of a proprietary system.

The parking is already 420mm higher than the existing ground level at the location of the paving (it was 66.08, it will be 66.50).

To the rear of the dwelling is 550mm higher, the existing levels are currently 65.95, and the FFL is proposed to be 66.50.

We feel the current design meets the standard needed, and whilst raising the dwelling may help with drainage, it will impact other areas of the design.

We are hopeful that, at this stage, the plans and measurements provided show that the design is achievable and that the drainage can be conditioned. If the offset to the groundwater needs to be increased further, the paving depth could be reduced to provide a larger offset; these displaced waters would then be guided to the floodable area to the rear, which is many times oversized. Or the sub-base could be replaced with permavoid (or similar) to provide the same storage in a

shallower depth. But we cannot see that this could be a reason to maintain the objection, as there is a solution and clarity is only required on the finer points.

Please do feel free to give me a call if you or Laurence would like to discuss this. As you are probably aware, this site goes to the Lowlands committee on the 8th, and we need to have the drainage agreed upon before this date.

All the best,

Richard White

B.Sc (Hons) C.Env C.WEM I.Eng F.IHE MCIWEM Managing Director

Infrastruct CS Ltd

Consulting Civil Engineers

The Stables, High Cogges Farm, High Cogges, Witney, Oxon, OX29 6UN.

Web: www.infrastructcs.co.uk

From: Kevin Jack < <u>Kevin Jack@publicagroup.uk</u>> Sent: Thursday, January 4, 2024 3:54 PM

To: Richard White <

Cc:

Subject: RE: Chapel Lane Soakage

Happy new year Richard

I can acknowledge that no photographic evidence has been supplied of the application site having flooded previously, and that the depth to groundwater on the allotment site cannot be taken into consideration otherwise there would be evidence of flooding on the application site. I also note that the latest recorded depth to groundwater of 330mm on the application site is significantly less than previously measured.

As you have stated it is proposed to raise levels of the lower site, can you please confirm by how much it is currently proposed to raise them by and whether the latest groundwater reading has been taken into consideration with regards to the base level of the permeable paving, i.e. is there any scope for raising the ground levels further?

Regards

From: Richard White Sent: 02 January 202

To: Kevin Jack < Kevin. Jack@publicagroup.uk >

Cc:

Subject: RE: Chapel Lane Soakage

You don't often get email from

earn why this is important

Good afternoon Kevin/Laurence,

Happy New Year! I hope you guys managed to have a good Christmas break despite the rain. To follow up on my discussion with Laurence on the 22nd of December, I am attaching an updated SuDS report and stand-alone Groundwater monitoring report for your review.

There is now an updated Groundwater monitoring section to the SuDS report, the bund is keyed into the sub-soil and the 2nd soakage test has now been added too. A measurement today, following three days of significant rainfall, is as high as ever recorded, putting it at 304mm below the base of the infiltration structure. This complies with the treatment requirements of C753, which requires 300mm (see footnotes to table 26.4 in C753). In addition to this, because it is close to the line, we recommend a SuDS geotextile to help capture any oils that may make it though, before they reach the underlying soils.

We would also note that Batt's field again had standing water this morning, showing there is no correlation between standing water on the surface of the neighbouring land and the groundwater level on our client's land. Photos can be provided of this surface ponding if it would help.

All the best,

Richard White

B.Sc (Hons) C.Env C.WEM I.Eng F.IHE MCIWEM Managing Director

Infrastruct CS Ltd

Consulting Civil Engineers

The Stables, High Cogges Farm, High Cogges, Witney, Oxon, OX29 6UN.

wep: www.inirastructcs.co.uk

From: Richard White

Sent: Friday, December 22, 2023 1:44 PM To: Kevin Jack < Kevin. Jack@publicagroup.uk >

Cc: L

Subject: RE: Chapel Lane Soakage

Thank you Kevin,

Whilst we appreciate the concerns, the number of objections does not necessarily correlate with the validity of those objections. The main drainage concern voiced for this application seems to be the Thames Water system, which is not a planning issue. Whilst we do understand the emotive reaction to drainage, we also believe the flood risk in the area will be marginally reduced as a result of the works due to the bunded area. Ultimately, the same amount of rain will fall with or without this scheme, and the connectivity of the gravels below means said rainfall will spread quickly to the places it has always gone; the keyed bund may help reduce the risk of this leaving site. The capacity of the Thames Water pumping station, as noted above, is not a planning issue, as they are a statutory body, and it is not being made an issue elsewhere in WODC, where Thames Water is

also using tankers. If this were a planning issue, the majority of the Low-lands would be undevelopable, and the number of houses being built indicates that this is not the case.

We do not believe the groundwater can be an issue for this site; there has been no substantiated evidence of the site ever flooding (so the groundwater must be below ground level), and the SuDS system is above the general ground level, so it follows that if groundwater stays at the current typical levels, the SuDS system will not be below the groundwater level.

If the site had ever flooded, given the level of objection, we expect that at least one person in the village would have taken a photo of the site flooded by now. On the basis of there having been no flooding historically, the permeable paving is highly unlikely to be inundated by groundwater.

Further to the above, the SuDS Manual C753 (the standard for SuDS design) discusses the use of SuDS in areas of high groundwater. Please find an extract below, for ease of reference. Interestingly, the manual specifically mentions a WODC scheme with groundwater within 400mm. With the use of permeable paving, we are providing better treatment than was provided on the Henry Box site, and the parking will be at a much lower risk of a pollution event than the road.

8.3 HIGH GROUNDWATER LEVELS BELOW THE SITE

8.3.1 The challenges

When designing a surface water management system for a site that overlies high groundwater levels (ie maximum likely groundwater levels are within 1 m of the base of the SuDS component – see Section 25.2.2), the following challenges should be considered within the design process:

- The use of infiltration may not be suitable due to reduced hydraulic and treatment capacity.
- If SuDS are constructed below the maximum likely groundwater level, then groundwater can
 potentially enter the SuDS component and reduce the storage capacity.

132 Part C: Applying the approach

CIRIA SuDS Manual 2015

 Flotation and structural design risks to storage structures or impermeable liners can occur because of the extra loads imposed by the groundwater and the buoyancy of the tanks or liner.

One example of SuDS on a site with high groundwater levels is the Henry Box site in Witney, Oxfordshire. On this site, shallow source control methods using a combination of swales and kerb drains was used to manage surface water (Figure 8.5). Groundwater was 400 mm to 700 mm below the surface of the site, and ground levels could not be raised as part of the development.

Figure 8.5 Shallow swale on a site with shallow groundwater, Witney, Oxfordshire (courtesy EPG Limited)

The next section 8.3.2 discusses permeable paving and the design considerations, these are discussed below:

8.3.2 The use of infiltration where groundwater levels are high

Infiltration may not be suitable where there is not an adequate depth of unsaturated soils (ie greater than 1 m) between the infiltration surface and the groundwater. Any assumption of pollution protection within the unsaturated soil layer will also be invalidated. Contaminated surface water runoff can potentially directly pollute groundwater if the groundwater is hydraulically linked to water within the SuDS.

Depending on the depth of groundwater below the site it may be possible to use shallow infiltration basins or permeable pavements. On some sites careful use of land raising with suitable fill materials may also be an option, although this will require advice from a ground engineering specialist, to ensure that the infiltration capacity and risk of settlement or instability is acceptable.

Where infiltration into sites with shallow groundwater tables is proposed, the impact of recharge in thin aquifers leading to groundwater mounding (even under average conditions) should be considered. This risk is minimised by using planar infiltration systems such as discharges from below a pervious surface.

The impact of fluvial flood events on groundwater levels should also be considered, as there may be impacts even if the site is outside the fluvial flood plain.

Contamination of the groundwater - We believe, and the guidance in C753 states, that permeable paving provides suitable treatment for residential parking areas

Stability of the sub-soils – Gravels are amongst the more stable soil types

Groundwater recharge – The hydraulic conductivity will mean the water spreads fast across the site, as it does with no building or parking there. There will be no material difference to groundwater recharge in this area as a result of these works.

As noted in C753, "This risk is minimised by using planar infiltration systems such as discharges from below a pervious surface." le the use of permeable paving, so we are following the recommendation of C753

Fluvial flood risk – The site is in flood zone 1.

On the basis that the site complies with the recommendations of the C753 - SuDS manual, we cannot see a justifiable reason to hold the objection. If groundwater had been as high as ground level, we believe it would have been reported/recorded, and as such, we do not believe groundwater will be an insurmountable issue.

If more information is required, please confirm exactly what it is that you need to see. But we would expect that with the above and the updated drawing (attached), a condition could now cover any items.

We hope you have a wonderful Christmas break and look forward to working with you all again in the new year!

All the best,

Richard White

B.Sc (Hons) C.Env C.WEM I.Eng F.IHE MCIWEM Managing Director

Infrastruct CS Ltd

Consulting Civil Engineers

The Stables, High Cogges Farm, High Cogges, Witney, Oxon, OX29 6UN.

Web: www.infrastructcs.co.uk

From: Kevin Jack < Kevin.Jack@publicagroup.uk Sent: Friday, December 22, 2023 11:49 AM

To: Richard White

Subject: FW: Chapel Lane Soakage

Hello Richard

Unfortunately, with the very large number of flooding-related objections received for this latest application, a handwritten note of groundwater depths without corroborating borehole logs is not going to be sufficient to satisfy the concerns, especially as the same figure (590mm) keeps cropping up. Although a further soakage test has been carried out which indicates similar infiltration to before, formal evidence that groundwater will not be an insurmountable issue is required to be submitted before I can remove my objection.

I have taken on board your response to the concerns raised about the meadow/storage area and bund. While the nature of the gravel sub-soil will not be altered by your proposals, it may be helpful if the bund is keyed further into the sub-soil if this helps to placate the objectors, as you have suggested.

In response to your previous comment about 23/02695/FUL, the s/w strategy is still under discussion and has not yet been approved.

Regards

Kevin Jack Land Drainage Consenting and Enforcement Officer

From: Richard White Sent: 21 December 202

Subject: Chapel Lane Soakage

Learn why this is important

Hi Kevin,

Please can you let us know if you have had a chance to review this one? The planning officer, Esther Hill is very keen to get this one closed out ASAP.

The owners have carried out an additional soakage test; admittedly, it is not to BRE365, but on the basis that this matches the previous, we cannot see why this would be needed. The rate is fractionally faster/better than the previous, at 1.387E-05 m/s, so it will require the same volume of storage.

With regards to rainfall, Standlake (presumed to be similar to Brize Norton) has had approx:

71.2mm in November compared to the average of 60.88mm and

106.1mm in October compared to 62.71mm.

So, the rainfall has been well above the average this winter, which would be expected to elevate the groundwater level.

Please feel free to give me a call if you would like to discuss this.

All the best.

Richard White

B.Sc (Hons) C.Env C.WEM I.Eng F.IHE MCIWEM Managing Director

Infrastruct CS Ltd

Consulting Civil Engineers

The Stables, High Cogges Farm, High Cogges, Witney, Oxon, OX29 6UN.

Web: www.infrastructcs.co.uk

Publica is a company wholly owned by Cotswold District Council, Forest of Dean District Council, West Oxfordshire District Council and Cheltenham Borough Council to deliver local services on their behalf.

The content of this email and any related emails do not constitute a legally binding agreement and we do not accept service of court proceedings or any other formal notices by email unless specifically agreed by us in writing.

Recipients should be aware that all e-mails and attachments sent and received by Publica on behalf of West Oxfordshire, Cotswold and/or Forest of Dean District Council may be accessible to others in the Council for business or litigation purposes, and/or disclosed to a third party under the Freedom of Information or Data Protection Legislation.

Publica is a company wholly owned by Cotswold District Council, Forest of Dean District Council, West Oxfordshire District Council and Cheltenham Borough Council to deliver local services on their behalf.

The content of this email and any related emails do not constitute a legally binding agreement and we do not accept service of court proceedings or any other formal notices by email unless specifically agreed by us in writing.

Recipients should be aware that all e-mails and attachments sent and received by Publica on behalf of West Oxfordshire, Cotswold and/or Forest of Dean District Council may be accessible to others in the Council for business or litigation purposes, and/or disclosed to a third party under the Freedom of Information or Data Protection Legislation.

DRAINAGE STRATEGY

CHAPELLANE, STANDLAKE MR PATRICK STEEPE MARCH 2021 4212-CHAP-ICS-XX-RP-C-07.001-P07

DRAINAGE STRATEGY

4212-CHAP-ICS-XX-RP-C-07.001-P07

REPORT ISSUE

Revision	Date	Notes
P01	16/03/2021	First Issue.
P02	22/07/2022	Second Issue.
P03	29/07/2022	Site layout/entrance updated.
P04	18/04/2023	Groundwater monitoring added.
P05	08/06/2023	Updated in line with the comments from Drainage Officer
P06	16/10/2023	Exceedance pathway routed to private land
P07	02/01/2023	Additional GW monitoring added

PREPARED BY

June 2023 I. Tuton

REVIEWED BY

A. J. GRIFFITHS June 2023

DISCLAIMER

This document has been prepared solely as a drainage strategy for the Client, Mr Patrick Steepe. No responsibility or liability will be accepted for any use that is made of this document other than by the Client for the purpose it was written. The conclusions resulting from this study and contained within this report are not necessarily indicative of future conditions or operating practices at or adjacent to the site.

No person other than the client may copy use or rely on the contents of this document without prior permission.

Some of the information presented within this report is based on third-party information which is believed to be correct; no liability will be accepted for any discrepancies in accuracy, mistakes or omissions in such information.

The contents of this document must not be copied or reproduced in whole or in part without the written consent of Infrastruct CS Ltd

Directors: T. S. Trotman M.Eng (Hons) C.Eng CWEM MCIWEM FIHE, D. Jeffery I.Eng FIHIE R.J. White B.Sc (Hons) C.Env C.WEM I.Eng MCIWEM, A. J. Griffiths BEng (Hons) MCIHT N. Jones, M. Blanco M.Eng GMICE Registered Office: Jamesons House, Compton Way, Witney, OX28 3AB Registered in England and Wales 07521130, VAT No: 111335958

TABLE OF CONTENTS

1 DRAINA	AGE STRATEGY	1
APPENDIX A -	Infiltration Testing and Groundwater	4
Infiltration Tes	STING	5
Groundwater	MONITORING	6
Appendix B -	MAINTENANCE SCHEDULE	7
APPENDIX C -	ARCHITECTS LAYOUT	0
Appendix D -	DRAINAGE LAYOUT	1
APPENDIX E -	MICRO DRAINAGE CALCULATIONS	2
DRIVEWAY CAL	CULATIONS	3
PATIO CALCULA	NTIONS	4

1 DRAINAGE STRATEGY

		Refence
ltem	Details	/Comment
Method of Foul Water Discharge	Foul water flows are to drain to the existing an adopted sewer in the Chapel Lane via gravity. The on-site system will be privately maintained by the owners of the freehold or their representatives. Should, for any reason a sewered connection proved not to be viable, there is sufficient space within the client's ownership for a treatment plant and associated drainage mound.	The new connection will be subject to \$106 consent from Thames Water
Method of Surface Water Discharge	The surface water drainage design proposed for the new dwellings is to follow the drainage hierarchy to ensure the site reflects the natural flows from the site as closely as possible: 1. Rainwater reuse 2. Infiltration 3. Discharge to Surface Water or a Watercourse 4. Discharge to a Surface Water sewer or a Highway Drain 5. Discharge to a Foul Sewer Surface water falling onto the roof and hardstanding areas is to be drained via infiltration, using permeable paving. Surface water falling onto the roof and hardstanding areas is to be drained to the sub-base of the permeable paving where it will infiltrate a source.	Due to the low-lying nature of the site and the potential for high-ground waters, an x5 factor of safety has been used when sizing the soakaway.
Local Ground Conditions	Trial holes indicate that the site is underlain by freely draining gravel.	
Infiltration Rate	Soakage testing to BRE365 has been undertaken on-site by T Biswell and found the site to have an infiltration rate of 1.348x10 ⁻⁵ m/s	The Infiltration Rate used for the design is 1.348x10 ⁻⁵ m/s
Surface Water Calculations	The surface water drainage system has been designed for a 1 in 100-year event, plus an allowance of 40% for climate change. Impermeable areas have had an additional 10% added for urban creep in line with Ciria C753. Contributing Areas Roof Areas = 200 m² Patio Area = 60 m² Parking Area = 130 m² Total Area = 390 m²	The total impermeable area for the site is 390 m ²

The site investigation report confirmed that the natural water table was not encountered during the soakage testing to 0.5m depth. Further testing between November 2022 and January 2024 indicated peak ground water encountered 330 mm below ground level of 65.67. To ensure the greatest practical offset between the base of the lowest infiltration feature and the highest recorded groundwater, permeable surfacing is to be used for the hardstanding providing a freeboard of more than 300mm. The proposed base of the permeable paving is above the current ground level. As no surface/groundwater flooding has been recorded to date, the risk of inundation of the on-site storage is considered low. Tanked sides will ensure no lateral movement of water.

Ground Water

Anecdotal evidence of a higher groundwater table has been supplied to the planners, the measurement point is approximately 50m northwest of the site and included measurements within 10mm of ground level. This is believed to be a localised, perched water table, which is at a higher elevation than the proposed site. If this were representative of the proposed site groundwater level, there would have been visible ponding on-site at that time.

Groundwater has not been recorded at a surface level on the site. So, it is taken that groundwater on site has historically been lower than 65.80 (the lowest point on site). Lower than the base of either the patio or driveway.

Permeable paving will be required for water purification qualities in order to avoid the need for petrol interceptors.

Based upon table 26.4 in C753, Permeable paving provides treatment levels of 0.7,0.6,0.7

	Indicative SuDS mitigation indices for discharges to groundwater				
26.4	Characteristics of the material overlying the proposed infiltration surface, through which the runoff percolates¹				
	Constructed permeable pavement (where a suitable filtration layer is included that provides treatment, and including a geotextile at the base separating the foundation from the subgrade) underlain by a soil with good contaminant attenuation potential? of at least 300 mm in deoth ³	0.7	0.6	0.7	

A betterment over the required treatment of 0.5,0.4,0.4

Water Quality

Pollution hazard indices for different land use classifications					
Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons	
Residential roofs	Very low	0.2	0.2	0.05	
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4	

The 300mm depth of sub-soil between the highest recorded groundwater depth and base of the lowest infiltration feature achieves this. However it is recommended a SuDS geotextile such as the Polypipe Permafilter Geotextile is used, which can ve shown to retain a range of oil contamination types, allowing decomposition prior to the ground water table and sub-soils.

Exceedance Flows	It is proposed that finished floor levels be raised 600mm above the existing average ground level to mitigate against the risk of any surface water flooding.
	Exceedance flows will be intercepted and directed to the lower garden area to the northwest. To ensure that this water does not leave the site, a bund will be constructed to a level of 66.30, tying into the new retaining walls. This will provide 140m3 of additional storage above any known groundwater level. Providing five times the anticipated volume of water from the 1 in 100-year event.
	Whilst not included in the calculations it is recommended that rainwater harvesting is installed to minimize the volume of the water draining to the paving sub-base.
	The proposed surface water drainage measures will be designed to contain the peak storm event that can be expected for a 1-in-100-year situation. A 40% allowance has already been applied to the site to account for future climate change, and a further 10% has been added to the impermeable areas to allow for urban creep.
Other	The site is located within Flood Zone 1 and is not at risk of fluvial flooding. The finished floor level should be set at 600mm or greater above the existing ground level to account for climate change.

Table 1 Drainage Strategy

Appendix A - Infiltration Testing and Groundwater

Infiltration Testing

Infrastruct CS

Soakaway Design Calculations to BRE365 (DG 365 Revised 2016)

Test Reference:	TP1
Site:	Chapel Lane
Client:	Steepe Builders
Test Date:	12/03/2021
Results logged by:	T Biswell

Calculations By:	RJW
Calculation Date:	15/03/2021
Length (m) =	1.00
Width (m) =	0.30
Depth (m) =	0.50

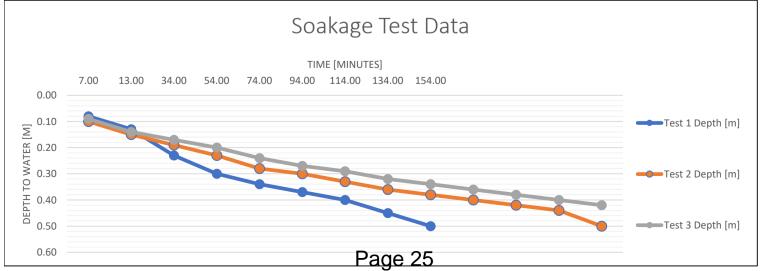
First Fill	
Time [Mins]	Test 1 Depth [m]
7.00	0.08
13.00	0.13
34.00	0.23
54.00	0.30
74.00	0.34
94.00	0.37
114.00	0.40
134.00	0.45
154.00	0.50

Second Fill	
Time [Mins]	Test 2 Depth [m]
10.00	0.10
20.00	0.15
30.00	0.19
40.00	0.23
50.00	0.28
60.00	0.30
70.00	0.33
80.00	0.36
90.00	0.38
100.00	0.40
120.00	0.42
130.00	0.44
145.00	0.50

Third Fill	
Time [Mins]	Test 3 Depth [m]
10.00	0.09
20.00	0.14
30.00	0.17
40.00	0.20
50.00	0.24
60.00	0.27
70.00	0.29
80.00	0.32
90.00	0.34
100.00	0.36
120.00	0.38
130.00	0.40
140.00	0.42

D	E	31	ш	TC	

Volume	
Vp75 - 25 [m³]	0.06300
Area A _{p50}	
$[m^2]=$	0.8460
Time	
t _{p75-25} [s] =	5167
Surface Water Soil	
infiltration rate	
[m/s]	1.441E-05
Treated Effluent	
Soil infiltration rate	
(V _{p)} [s/mm]	24.60
Surface Water Soil	
infiltration rate	
[m/hr]	0.052


R	F٩	UI	ıTS

<u>ILEGOLIO</u>	
Volume	
Vp75 - 25 [m³]	0.06000
Area A _{p50}	
$[m^2]=$	0.8200
Time	
t _{p75-25} [s] =	4350
Surface Water Soil	
infiltration rate	
[m/s]	1.682E-05
Treated Effluent	
Soil infiltration rate	
(V _{p)} [s/mm]	21.75
Surface Water Soil	
infiltration rate	
[m/hr]	0.061

RESULTS

Volume	
Vp75 - 25 [m³]	0.06150
Area A _{p50}	
$[m^2]=$	0.8330
Time	
t _{p75-25} [s] =	5475
Surface Water Soil	
infiltration rate	
[m/s]	1.348E-05
Treated Effluent	
Soil infiltration rate	
(V _{p)} [s/mm]	26.71
Surface Water Soil	
infiltration rate	
[m/hr]	0.049

Slowest Soil Infiltration Rate [m/s] = 1.348E-05

Soakaway Design Calculations to BRE365 (DG 365 Revised 2016)

Test Reference:	TP1 - Test 2
Site:	Chapel Lane
Client:	Steepe Builders
Test Date:	16/12/2023
Results logged by:	T Biswell

Calculations By:	RJW
Calculation Date:	21/12/2023
Length (m) =	1.00
Width (m) =	0.30
Depth (m) =	0.50

File ref:	4212-CHAP-13-002-BRE365.xlsx
-----------	------------------------------

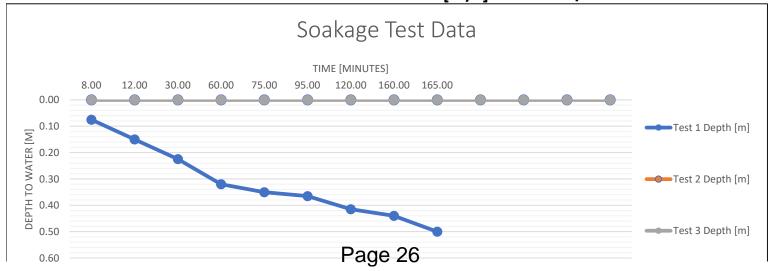
First Fill	
Time [Mins]	Test 1 Depth [m]
8.00	0.08
12.00	0.15
30.00	0.23
60.00	0.32
75.00	0.35
95.00	0.37
120.00	0.42
160.00	0.44
165.00	0.50

Second Fill		
Time [Mins]		Test 2 Depth [m]
0	.00	0.00

Third Fill	
Time [Mins]	Test 3 Depth [m]
0.00	0.00

R	FSI	Ш	TC

0.06375
0.8525
5393
1.387E-05
25.38
0.050


RESULTS

Volume	
Vp75 - 25 [m³]	0.00000
Area A _{p50}	
$[m^2]=$	1.6000
Time t _{p75} -	
₂₅ [s] =	#DIV/0!
Surface Water Soil	
infiltration rate	
[m/s]	#DIV/0!
Treated Effluent	
Soil infiltration rate	
(V _{p)} [s/mm]	#DIV/0!
Surface Water Soil	
infiltration rate	
[m/hr]	#DIV/0!

RESULTS

RESULIS	
Volume	
Vp75 - 25 [m³]	0.00000
Area A _{p50}	
$[m^2]=$	1.6000
Time t _{p75} -	
₂₅ [s] =	#DIV/0!
Surface Water Soil	
infiltration rate	
[m/s]	#DIV/0!
Treated Effluent	
Soil infiltration rate	
(V _{p)} [s/mm]	#DIV/0!
Surface Water Soil	
infiltration rate	
[m/hr]	#DIV/0!

Slowest Soil Infiltration Rate [m/s] = #DIV/0!

Groundwater Monitoring

Infrastruct CS

Infrastuct CS LTD

Site Name Chapel Lane, Standlake

Document Title 4212-CHAP-13-003-T1-Groundwater Monitoring

Document Revision Revision T1

Client P Steepe

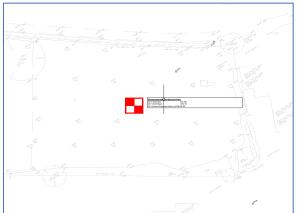
Calculations By Fergus Mckirdy

1 Introduction

This is a report showing the ground water levels relative to ground level for the proposed Chapel Lane, Standlake Development All information has been provided by the client P Steepe

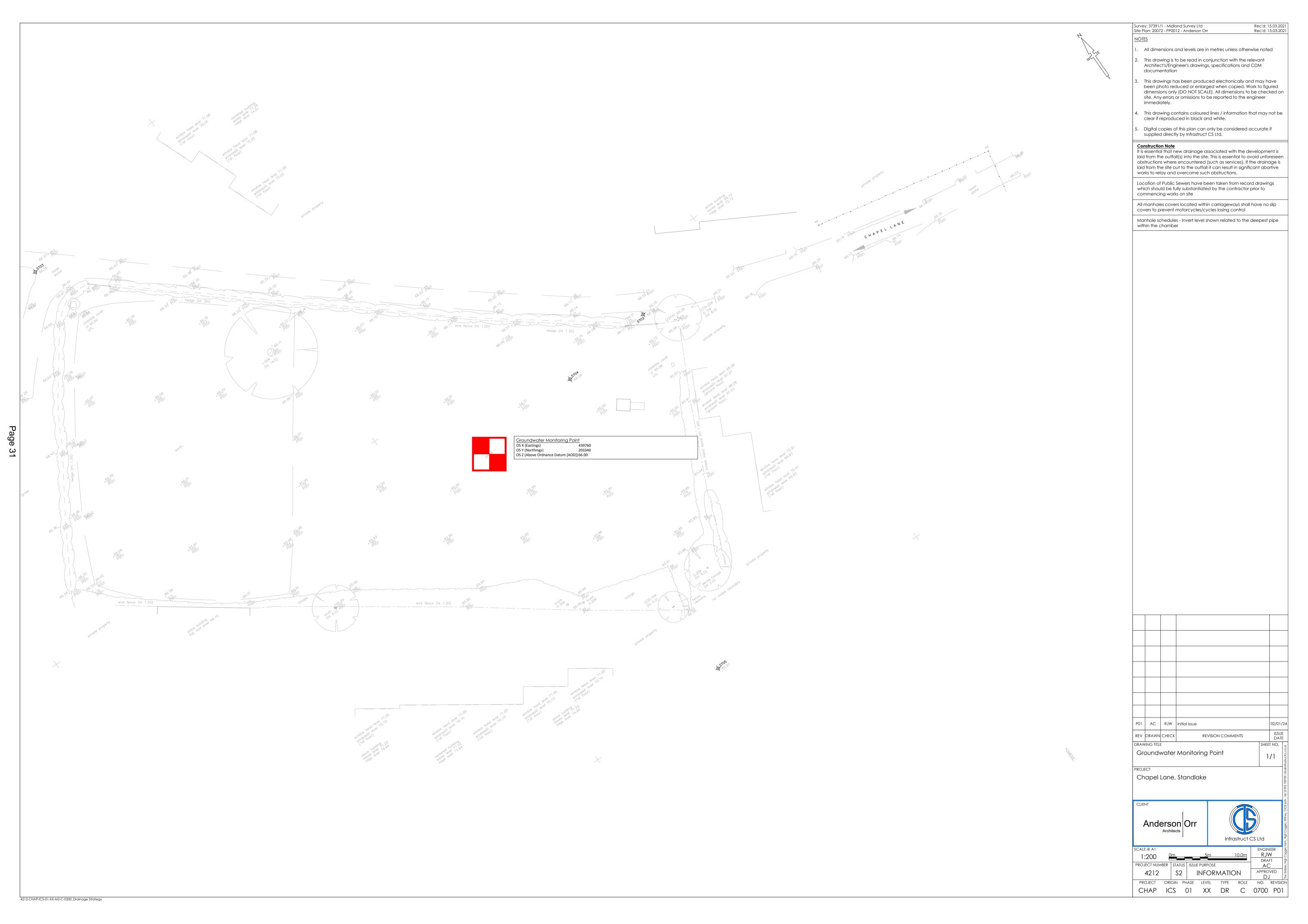
GROUNDWATER MONITORING - PAGE 1

Site:	Chapel Lane, Standlake
Client:	P Steepe


Calculations By:	Fergus Mckirdy
Calculation Date:	02 January 2024

File ref: 4212-CHAP-13-003-T1-Groundwater Monitoring.xlsx

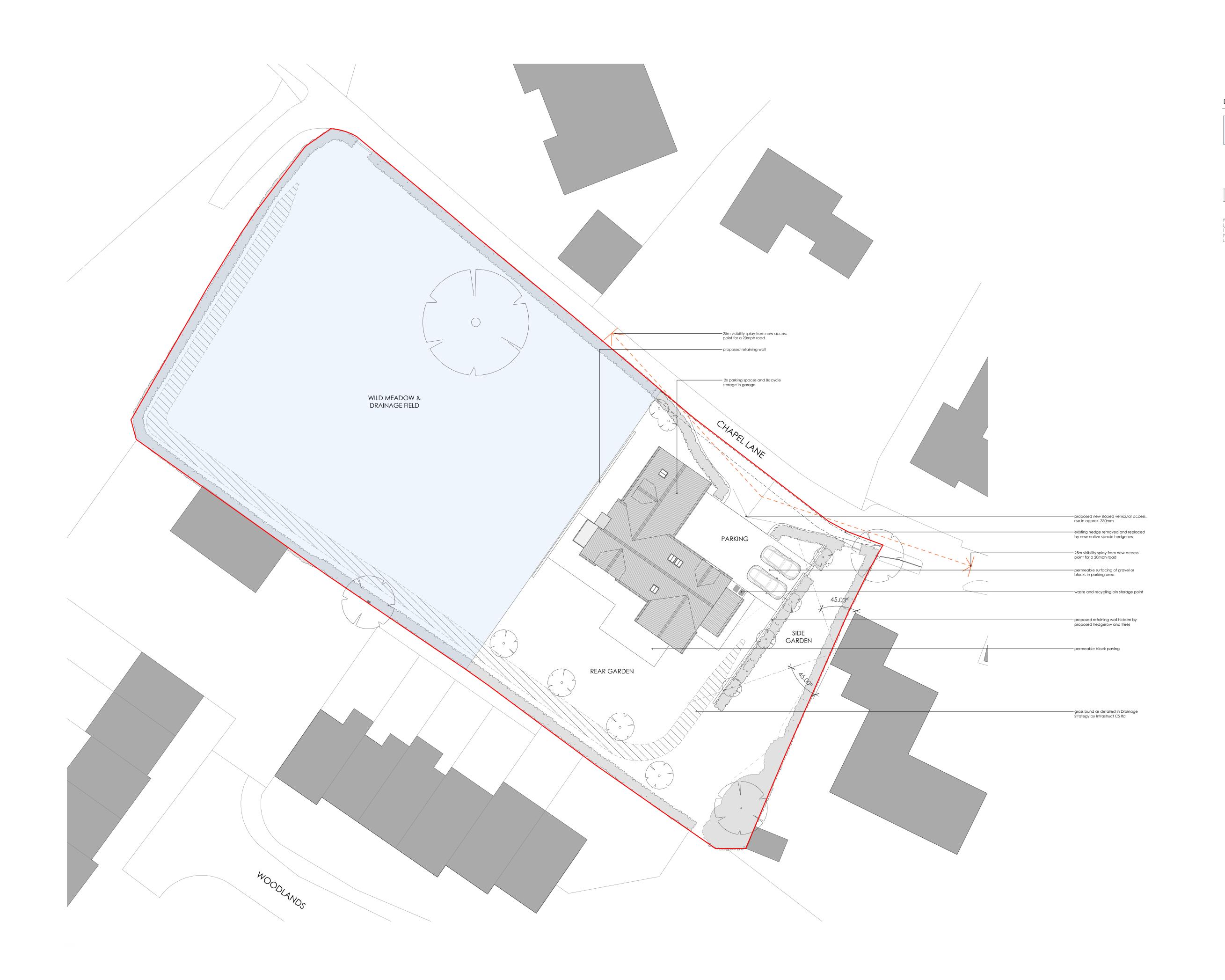
Trial Hole Location

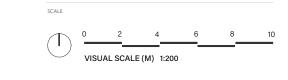

Unit	Measurement	
OS X (Eastings)	439760	
OS Y (Northings)	203340	
OS Z (Above Ordnance Datum [AOD])	66.00	
Nearest Post Code	OX29 7RA	

Measurements

Date	Measurement from ground level to water/mm	Approximite level (Above Ordnance Datum [AOD])/m
26 November 2022	590	65.41
10 December 2022	590	65.41
24 December 2022	590	65.41
07 January 2023	590	65.41
21 January 2023	590	65.41
04 February 2023	735	65.27
18 February 2023	800	65.20
28 February 2023	800	65.20
06 October 2023	1020	64.98
13 October 2023	900	65.10
24 October 2023	880	65.12
27 October 2023	740	65.26
03 November 2023	670	65.33
10 November 2023	590	65.41
17 November 2023	590	65.41
24 November 2023	670	65.33
01 December 2023	670	65.33
08 December 2023	590	65.41
20 December 2023	595	65.41
26 December 2023	670	65.33
02 January 2024	330	65.67

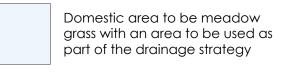
Appendix B - Maintenance Schedule

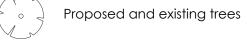

Item	Required Maintenance	Frequency
Pipe and chambers	CCTV camera survey, flush, descale, repair as necessary	5 Years or upon poor performance
Pervious Pavements	Inspect gravel for siltation and weed growth.	As required or upon poor performance
	Remove Weeds and rake.	As required or upon poor performance
	For heavy siltation or petrochemical spills lift surface gravel, wash and replace	As required or upon poor performance
	Stabilise and mow contributing and adjacent areas.	As required.
(Gravels)	Initial inspection.	Monthly for 3 months after installation
	Inspect for evidence of poor operation and/or weed growth. If required, take remedial action.	3-monthly, 48 h after large storms.
	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually.
	Monitor inspection chambers.	Annually.
Pervious pavements (Block Paving)	Brushing and vacuuming.	Three times/year at end of winter, mid-summer, after autumn leaf fall, or as required based on site-specific observations of clogging or manufacturers' recommendations.
	Stabilise and mow contributing and adjacent areas.	As required.
	Removal of weed.	As required.
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving.	As required.
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users.	As required.
	Rehabilitation of surface and upper sub-structure.	As required (if infiltration performance is reduced as a result of significant clogging).
	Initial inspection.	Monthly for 3 months after installation
	Inspect for evidence of poor operation and/or weed growth. If required, take remedial action.	3-monthly, 48 h after large storms.
	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually.
	Monitor inspection chambers.	Annually.
Rainwater Harvesting	Inspection of the tank for debris and sediment buildup, inlets/outlets/withdrawal devices, overflow areas, pumps, filters	Annually (and following poor performance)
	Cleaning of tank., inlets, outlets, gutters, withdrawal dev ices and roof drain filters of silts and other debris	Annually (and following poor performance)


CS
ţ
Stru
<u>ra</u>
\overline{c}

	Cleaning and/or replacement of any filters	Three monthly (or as required)
	Repair of overflow erosion damage or damage to tank.	As required
	Pump repairs	As required
Silt traps and catchpits	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then six monthly
	Debris removal from catchment surface (where may cause risks to performance)	Monthly
	Inspection of silt traps and catch pits to assess silt accumulation	Monthly (and after large storms)
	Removal of accumulated silt from silt trap and catch pit sumps	Annually, or as required
	Repair/rehabilitation of inlets, outlet, overflows and vents	As required
	Inspect/check all inlets, outlets, and overflows to ensure that they are in good condition and operating as designed	Annually and after large storms

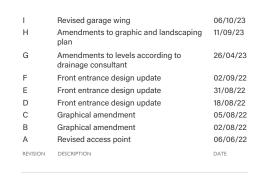
Table 2 SuDS Maintenance


Appendix C - Architects Layout



GENERAL NOTE
ALL DIMENSIONS MUST BE CHECKED ON SITE AND NOT SCALED FROM THIS DRAWING FOR USE IN PRECISE NAMED LOCATION ONLY ANDERSON ORR ARCHITECTS LTD. © ALL RIGHTS RESERVED

DRAWING GRAPHIC KEY



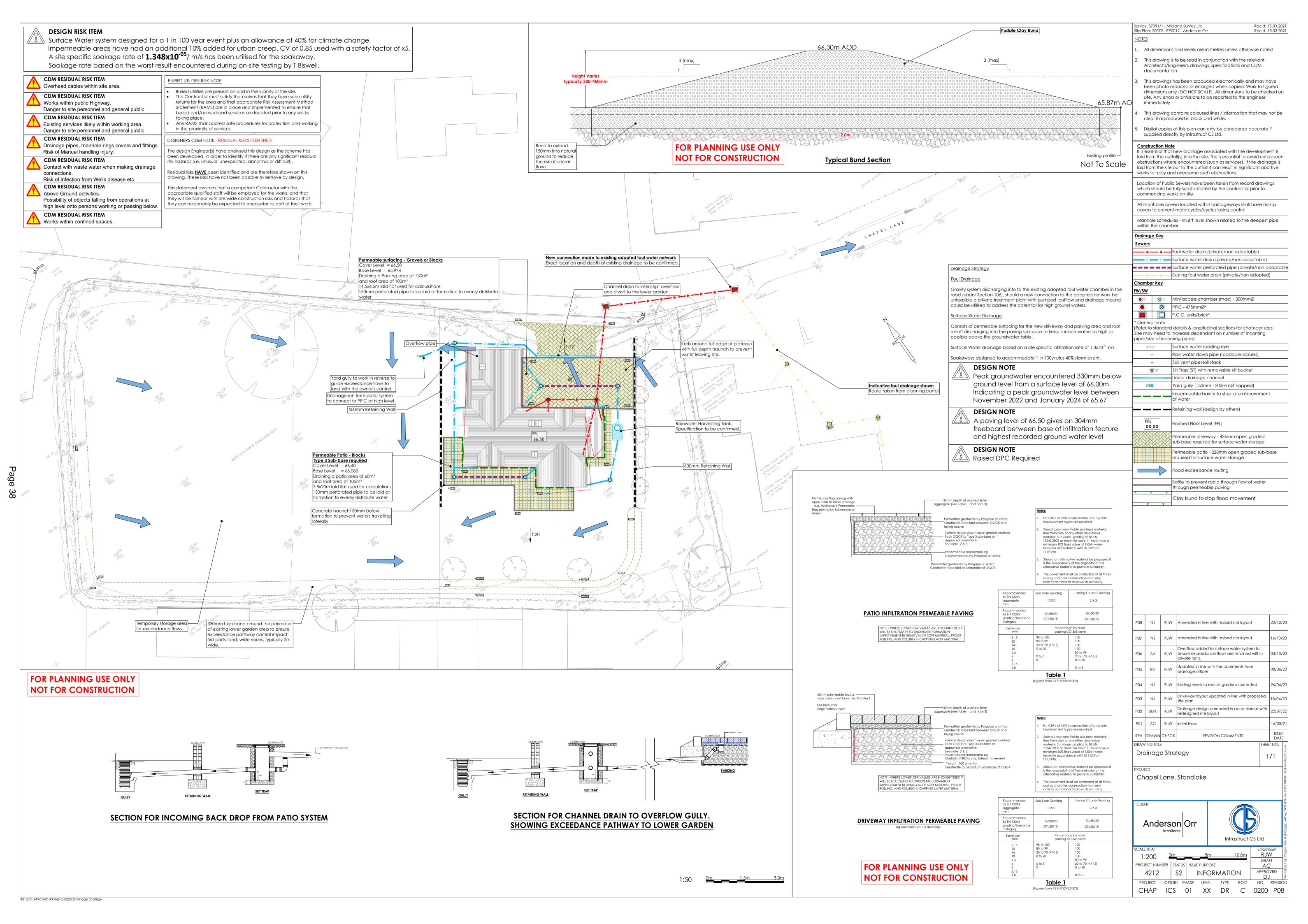
Proposed grass bund as detailed in Drainage Strategy by Infrastruct CS Itd

Proposed and existing hedges

PLANNING

Land Adj. Chapel Lane, Standlake

PROJECT – DRAWING NO – REVISION


PROPOSED SITE PLAN

20072-PP1012-I

The Big Barn: Units 8-10, Oddington Grange, Weston-on-the-Green, Oxfordshire, OX25 3QW +44 (0) 1865 873936 | info@andersonorr.com | andersonorr.com

AndersonOrr

Appendix D - Drainage Layout

Appendix E - Micro Drainage Calculations

Driveway Calculations

Infrastruct CS Ltd		Page 1
The Stables	Driveway Permeable Paving	
High Cogges, Witney	Chaple Lane	
Oxfordshire, OX29 6UN	Standlake	Micro
Date 08/06/2023	Designed by BMK	Drainage
File 4212-CHAP-ICS-XX-CA-C-05.003_DR	Checked by RJW	Dialilade
Innovyze	Source Control 2020.1.3	1

Half Drain Time : 413 minutes.

Storm Event		Max Level	Max Depth	Max Infiltration	Max Volume	Stat	tus	
			(m)	(m)	(1/s)	(m³)		
15	min	Summer	66.188	0.214	0.3	6.1		ОК
30	min	Summer	66.257	0.283	0.3	8.0	Flood	Risk
60	min	Summer	66.323	0.349	0.3	9.9	Flood	Risk
120	min	Summer	66.379	0.405	0.3	11.5	Flood	Risk
180	min	Summer	66.401	0.427	0.3	12.1	Flood	Risk
240	min	Summer	66.409	0.435	0.3	12.3	Flood	Risk
360	min	Summer	66.406	0.432	0.3	12.2	Flood	Risk
480	min	Summer	66.397	0.423	0.3	12.0	Flood	Risk
600	min	Summer	66.387	0.413	0.3	11.7	Flood	Risk
720	min	Summer	66.376	0.402	0.3	11.4	Flood	Risk
960	min	Summer	66.354	0.380	0.3	10.8	Flood	Risk
1440	min	Summer	66.311	0.337	0.3	9.5	Flood	Risk
2160	min	Summer	66.251	0.277	0.3	7.8	Flood	Risk
2880	min	Summer	66.198	0.224	0.3	6.3		O K
4320	min	Summer	66.113	0.139	0.3	3.9		O K
5760	min	Summer	66.057	0.083	0.3	2.3		O K
7200	min	Summer	66.028	0.054	0.3	1.5		O K
8640	min	Summer	66.020	0.046	0.2	1.3		O K
10080	min	Summer	66.014	0.040	0.2	1.1		O K
15	min	Winter	66.188	0.214	0.3	6.1		O K
30	min	Winter	66.257	0.283	0.3	8.0	Flood	Risk
60	min	Winter	66.323	0.349	0.3	9.9	Flood	Risk
120	min	Winter	66.380	0.406	0.3	11.5	Flood	Risk
180	min	Winter	66.402	0.428	0.3	12.1	Flood	Risk
240	min	Winter	66.410	0.436	0.3	12.3	Flood	Risk
360	min	Winter	66.409	0.435	0.3	12.3	Flood	Risk

Storm			Rain	Flooded	Time-Peak				
	Even	t	(mm/hr)	Volume	(mins)				
				(m³)					
15	min	Summer	138.153	0.0	22				
30	min	Summer	90.705	0.0	37				
60	min	Summer	56.713	0.0	66				
120	min	Summer	34.246	0.0	124				
180	min	Summer	25.149	0.0	182				
240	min	Summer	20.078	0.0	242				
360	min	Summer	14.585	0.0	360				
480	min	Summer	11.622	0.0	410				
600	min	Summer	9.738	0.0	470				
720	min	Summer	8.424	0.0	532				
960	min	Summer	6.697	0.0	664				
1440	min	Summer	4.839	0.0	936				
2160	min	Summer	3.490	0.0	1336				
2880	min	Summer	2.766	0.0	1708				
4320	min	Summer	1.989	0.0	2424				
5760	min	Summer	1.573	0.0	3064				
7200	min	Summer	1.311	0.0	3680				
8640	min	Summer	1.129	0.0	4408				
10080	min	Summer	0.994	0.0	5144				
15	min	Winter	138.153	0.0	22				
30	min	Winter	90.705	0.0	36				
60	min	Winter	56.713	0.0	64				
120	min	Winter	34.246	0.0	122				
180	min	Winter	25.149	0.0	180				
240	min	Winter	20.078	0.0	236				
360	min	Winter	14.585	0.0	348				
		©1982-	Page	4 dvvze					
	⊚1982 - 2'@g€ r 4 6 vyze								

Infrastruct CS Ltd		Page 2
The Stables	Driveway Permeable Paving	
High Cogges, Witney	Chaple Lane	
Oxfordshire, OX29 6UN	Standlake	Micro
Date 08/06/2023	Designed by BMK	Drainage
File 4212-CHAP-ICS-XX-CA-C-05.003_DR	Checked by RJW	Dialilade
Innovyze	Source Control 2020.1.3	

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)		Status
480	min Wint	er 66.398	0.424	0.3	12.0	Flood Risk
600	min Wint	er 66.384	0.410	0.3	11.6	Flood Risk
720	min Wint	er 66.371	0.397	0.3	11.2	Flood Risk
960	min Wint	er 66.341	0.367	0.3	10.4	Flood Risk
1440	min Wint	er 66.279	0.305	0.3	8.6	Flood Risk
2160	min Wint	er 66.192	0.218	0.3	6.2	O K
2880	min Wint	er 66.119	0.145	0.3	4.1	O K
4320	min Wint	er 66.029	0.055	0.3	1.6	O K
5760	min Wint	er 66.015	0.041	0.2	1.2	O K
7200	min Wint	er 66.009	0.035	0.2	1.0	O K
8640	min Wint	er 66.004	0.030	0.2	0.8	O K
10080	min Wint	er 66.000	0.026	0.1	0.7	O K

Storm Event			Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
480	min	Winter	11.622	0.0	448
600	min	Winter	9.738	0.0	482
720	min	Winter	8.424	0.0	556
960	min	Winter	6.697	0.0	708
1440	min	Winter	4.839	0.0	998
2160	min	Winter	3.490	0.0	1408
2880	min	Winter	2.766	0.0	1760
4320	min	Winter	1.989	0.0	2332
5760	min	Winter	1.573	0.0	2992
7200	min	Winter	1.311	0.0	3672
8640	min	Winter	1.129	0.0	4408
10080	min	Winter	0.994	0.0	5056

Infrastruct CS Ltd		Page 3
The Stables	Driveway Permeable Paving	
High Cogges, Witney	Chaple Lane	
Oxfordshire, OX29 6UN	Standlake	Micro
Date 08/06/2023	Designed by BMK	Drainage
File 4212-CHAP-ICS-XX-CA-C-05.003_DR	Checked by RJW	Dialilade
Innovyze	Source Control 2020.1.3	1

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.850
Region England and Wales Cv (Winter) 0.850
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.023

	(mins)				
From:	To:	(ha)	From:	To:	(ha)
0	4	0.013	4	8	0.010

Infrastruct CS Ltd		Page 4
The Stables	Driveway Permeable Paving	
High Cogges, Witney	Chaple Lane	
Oxfordshire, OX29 6UN	Standlake	Micro
Date 08/06/2023	Designed by BMK	Drainage
File 4212-CHAP-ICS-XX-CA-C-05.003_DR	Checked by RJW	namaye
Innovyze	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 66.500

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.04853	Width (m)	14.5
Membrane Percolation (mm/hr)	1000	Length (m)	6.5
Max Percolation (1/s)	26.2	Slope (1:X)	0.0
Safety Factor	5.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	65.974	Membrane Depth (m)	0

Patio Calculations

Infrastruct CS Ltd		Page 1
The Stables	Patio Permeable Surfacing	
High Cogges, Witney	Chaple Lane	
Oxfordshire, OX29 6UN	Standlake	Micro
Date 08/06/2023	Designed by BMK	Drainage
File 4212-CHAP-ICS-XX-CA-C-05.002_PA	Checked by RJW	Dialilade
Innovyze	Source Control 2020.1.3	

Half Drain Time : 158 minutes.

Storm Event		Max Level	Max Depth	Max Infiltration	Max Volume	Stat	tus	
			(m)	(m)	(1/s)	(m³)		
15	min	Summer	66.236	0.154	0.4	4.0	Flood	Risk
30	min	Summer	66.266	0.184	0.4	5.3	Flood	Risk
60	min	Summer	66.292	0.210	0.4	6.5	Flood	Risk
120	min	Summer	66.308	0.226	0.4	7.2	Flood	Risk
180	min	Summer	66.310	0.228	0.4	7.3	Flood	Risk
240	min	Summer	66.308	0.226	0.4	7.2	Flood	Risk
360	min	Summer	66.302	0.220	0.4	6.9	Flood	Risk
480	min	Summer	66.295	0.213	0.4	6.6	Flood	Risk
600	min	Summer	66.286	0.204	0.4	6.2	Flood	Risk
720	min	Summer	66.278	0.196	0.4	5.8	Flood	Risk
960	min	Summer	66.261	0.179	0.4	5.1	Flood	Risk
1440	min	Summer	66.234	0.152	0.4	3.8	Flood	Risk
2160	min	Summer	66.209	0.127	0.4	2.7	Flood	Risk
2880	min	Summer	66.193	0.111	0.3	2.1	Flood	Risk
4320	min	Summer	66.171	0.089	0.3	1.3	Flood	Risk
5760	min	Summer	66.156	0.074	0.2	0.9	Flood	Risk
7200	min	Summer	66.145	0.063	0.2	0.7	Flood	Risk
8640	min	Summer	66.138	0.056	0.2	0.5	Flood	Risk
10080	min	Summer	66.132	0.050	0.2	0.4	Flood	Risk
15	min	Winter	66.237	0.155	0.4	4.0	Flood	Risk
30	min	Winter	66.266	0.184	0.4	5.3	Flood	Risk
60	min	Winter	66.292	0.210	0.4	6.5	Flood	Risk
120	min	Winter	66.308	0.226	0.4	7.2	Flood	Risk
180	min	Winter	66.309	0.227	0.4	7.2	Flood	Risk
240	min	Winter	66.306	0.224	0.4	7.1	Flood	Risk
360	min	Winter	66.297	0.215	0.4	6.7	Flood	Risk

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
		Summer		0.0	22
30		Summer	90.705	0.0	36
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	158
240	min	Summer	20.078	0.0	188
360	min	Summer	14.585	0.0	254
480	min	Summer	11.622	0.0	322
600	min	Summer	9.738	0.0	388
720	min	Summer	8.424	0.0	456
960	min	Summer	6.697	0.0	584
1440	min	Summer	4.839	0.0	828
2160	min	Summer	3.490	0.0	1176
2880	min	Summer	2.766	0.0	1532
4320	min	Summer	1.989	0.0	2252
5760	min	Summer	1.573	0.0	2944
7200	min	Summer	1.311	0.0	3680
8640	min	Summer	1.129	0.0	4408
10080	min	Summer	0.994	0.0	5136
15	min	Winter	138.153	0.0	21
30	min	Winter	90.705	0.0	35
60	min	Winter	56.713	0.0	64
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	172
240	min	Winter	20.078	0.0	194
360	min	Winter	14.585	0.0	270
		©198 2	age 4	6 novyze	

Infrastruct CS Ltd		Page 2
The Stables	Patio Permeable Surfacing	
High Cogges, Witney	Chaple Lane	
Oxfordshire, OX29 6UN	Standlake	Micro
Date 08/06/2023	Designed by BMK	Drainage
File 4212-CHAP-ICS-XX-CA-C-05.002_PA	Checked by RJW	pramage
Innovyze	Source Control 2020.1.3	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)		Stat	tus
480	min W	Jinter	66.286	0.204	0.4	6.2	Flood	Risk
600	min W	Vinter	66.273	0.191	0.4	5.6	Flood	Risk
720	min W	Vinter	66.261	0.179	0.4	5.1	Flood	Risk
960	min W	Vinter	66.239	0.157	0.4	4.1	Flood	Risk
1440	min W	Vinter	66.209	0.127	0.4	2.7	Flood	Risk
2160	min W	Winter	66.184	0.102	0.3	1.8	Flood	Risk
2880	min W	Vinter	66.167	0.085	0.3	1.2	Flood	Risk
4320	min W	Vinter	66.145	0.063	0.2	0.7	Flood	Risk
5760	min W	Vinter	66.133	0.051	0.2	0.4	Flood	Risk
7200	min W	Vinter	66.128	0.046	0.1	0.4	Flood	Risk
8640	min W	Winter	66.125	0.043	0.1	0.3	Flood	Risk
10080	min W	Vinter	66.122	0.040	0.1	0.3	Flood	Risk

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
480	min	Winter	11.622	0.0	344
600	min	Winter	9.738	0.0	414
720	min	Winter	8.424	0.0	482
960	min	Winter	6.697	0.0	610
1440	min	Winter	4.839	0.0	840
2160	min	Winter	3.490	0.0	1196
2880	min	Winter	2.766	0.0	1560
4320	min	Winter	1.989	0.0	2252
5760	min	Winter	1.573	0.0	2936
7200	min	Winter	1.311	0.0	3672
8640	min	Winter	1.129	0.0	4352
10080	min	Winter	0.994	0.0	5016

Infrastruct CS Ltd		Page 3
The Stables	Patio Permeable Surfacing	
High Cogges, Witney	Chaple Lane	
Oxfordshire, OX29 6UN	Standlake	Micro
Date 08/06/2023	Designed by BMK	Drainage
File 4212-CHAP-ICS-XX-CA-C-05.002_PA	Checked by RJW	Dialilade
Innovyze	Source Control 2020.1.3	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.850
Region England and Wales Cv (Winter) 0.850
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.017

				(mins)	
From:	To:	(ha)	From:	To:	(ha)
0	4	0.006	4	8	0.011

Infrastruct CS Ltd		Page 4
The Stables	Patio Permeable Surfacing	
High Cogges, Witney	Chaple Lane	
Oxfordshire, OX29 6UN	Standlake	Micro
Date 08/06/2023	Designed by BMK	Drainage
File 4212-CHAP-ICS-XX-CA-C-05.002_PA	Checked by RJW	niamade
Innovyze	Source Control 2020.1.3	1

Model Details

Storage is Online Cover Level (m) 66.400

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.04853	Width (m)	7.5
Membrane Percolation (mm/hr)	1000	Length (m)	20.0
Max Percolation (1/s)	41.7	Slope (1:X)	150.0
Safety Factor	5.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	66.082	Membrane Depth (m)	0

Infrastuct CS LTD

Site Name Chapel Lane, Standlake

Document Title 4212-CHAP-13-003-T1-Groundwater Monitoring

Document Revision Revision T1

Client P Steepe

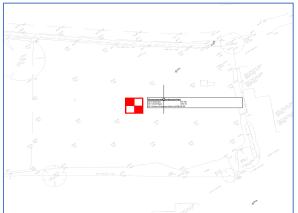
Calculations By Fergus Mckirdy

1 Introduction

This is a report showing the ground water levels relative to ground level for the proposed Chapel Lane, Standlake Development All information has been provided by the client P Steepe

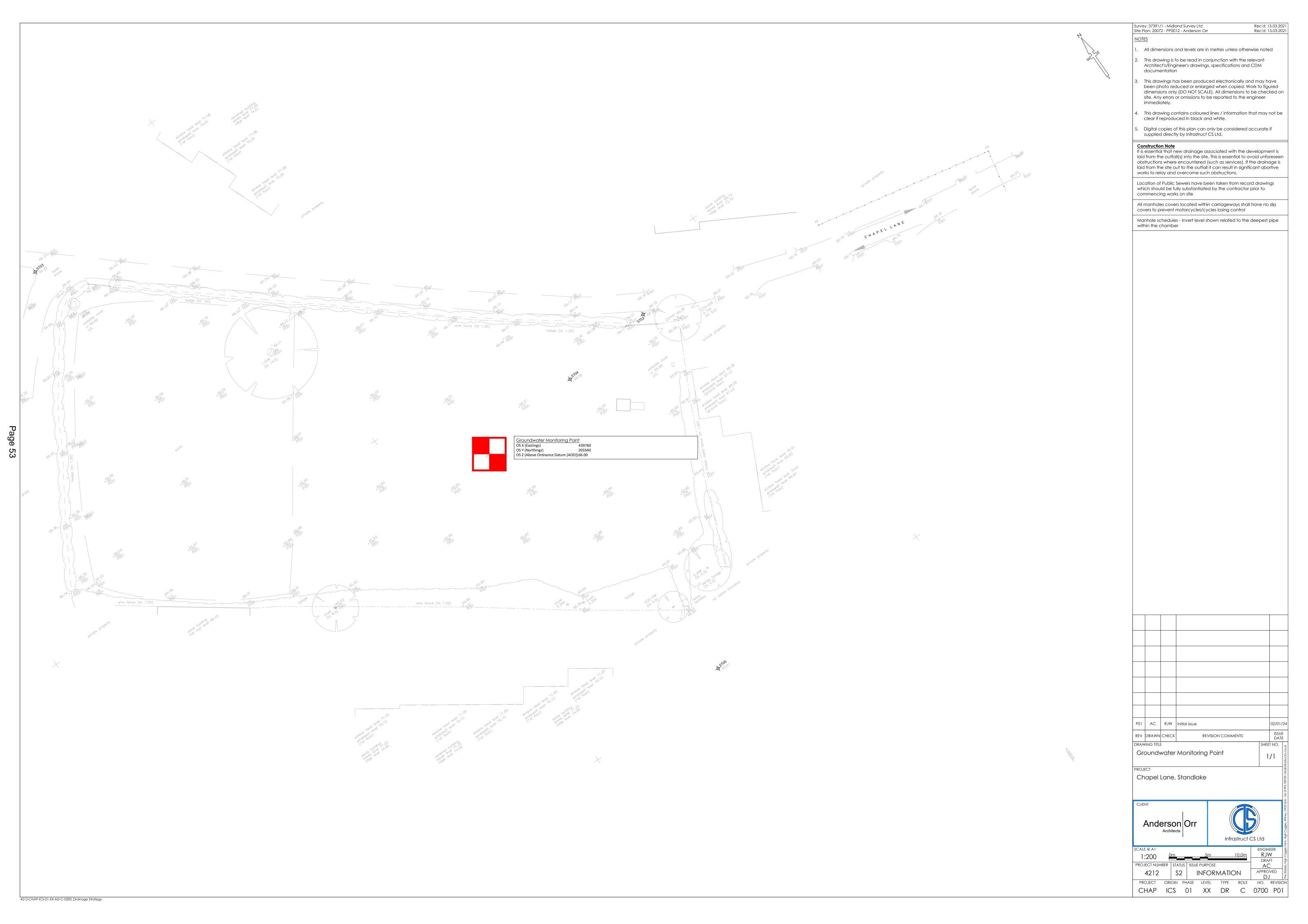
GROUNDWATER MONITORING - PAGE 1

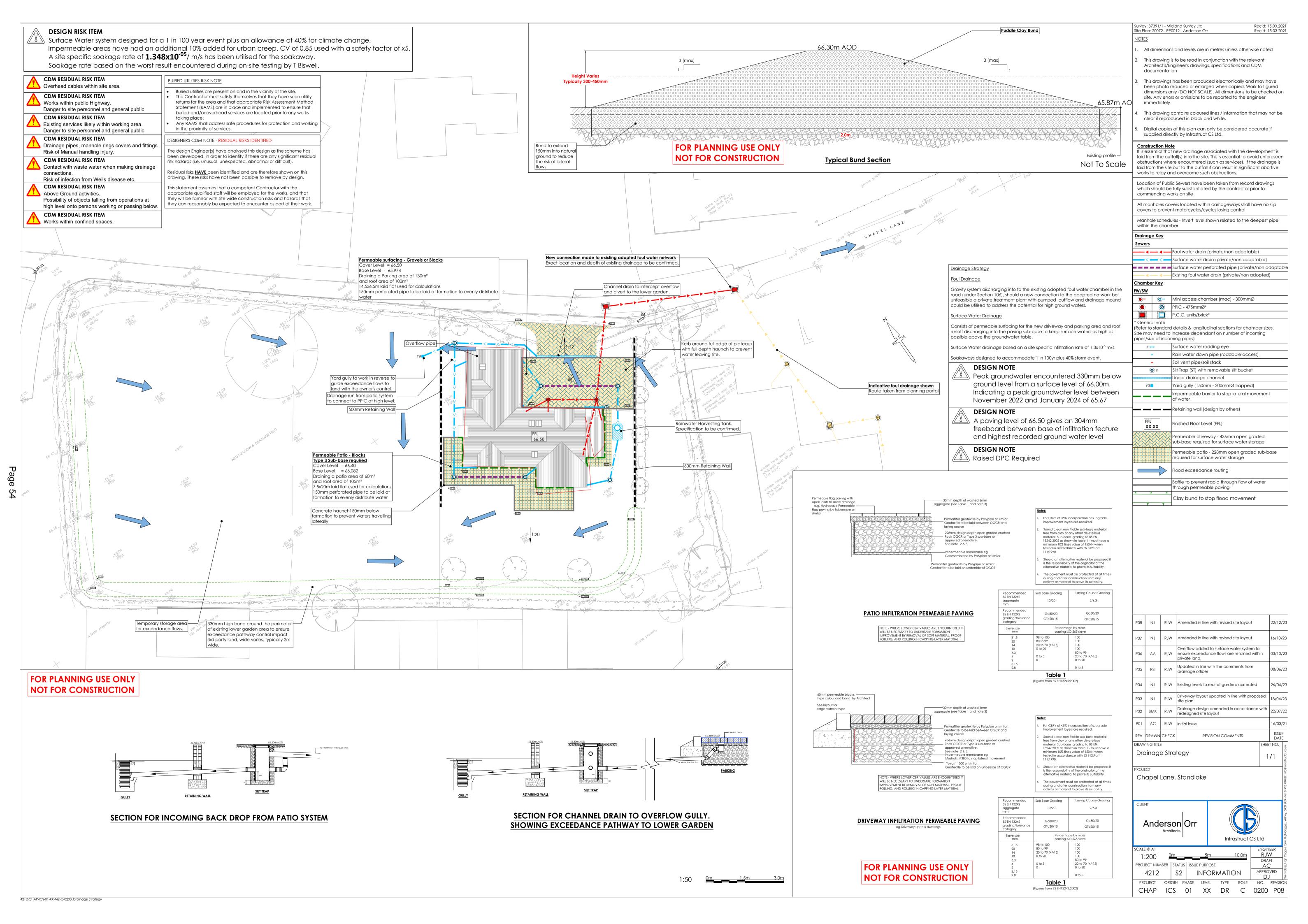
Site:	Chapel Lane, Standlake
Client:	P Steepe


Calculations By:	Fergus Mckirdy
Calculation Date:	02 January 2024

File ref: 4212-CHAP-13-003-T1-Groundwater Monitoring.x	ιlsx
--	------

Trial Hole Location


Unit	Measurement
OS X (Eastings)	439760
OS Y (Northings)	203340
OS Z (Above Ordnance Datum [AOD])	66.00
Nearest Post Code	OX29 7RA



Measurements

Date	Measurement from ground level to water/mm	Approximite level (Above Ordnance Datum [AOD])/m
26 November 2022	590	65.41
10 December 2022	590	65.41
24 December 2022	590	65.41
07 January 2023	590	65.41
21 January 2023	590	65.41
04 February 2023	735	65.27
18 February 2023	800	65.20
28 February 2023	800	65.20
06 October 2023	1020	64.98
13 October 2023	900	65.10
24 October 2023	880	65.12
27 October 2023	740	65.26
03 November 2023	670	65.33
10 November 2023	590	65.41
17 November 2023	590	65.41
24 November 2023	670	65.33
01 December 2023	670	65.33
08 December 2023	590	65.41
20 December 2023	595	65.41
26 December 2023	670	65.33
02 January 2024	330	65.67

Good afternoon Kevin.

As discussed earlier, we believed we had reached an agreement about the way forward for this in the summer, in that we would continue to utilise a shallow infiltration method on a raised site, to spread the water as much as possible, and keep infiltration above groundwater level (and for the most part the existing ground level) with an overflow to a vastly oversized basin area to the north-west, to serve the site should the design storm be exceeded. However, we note there are some new comments on the portal:

I see there a great number of objections to this development on flooding grounds. My comments are -

I objected to the previous application, 22/01908/FUL (subsequently withdrawn), on the basis that a viable drainage strategy had not been submitted. Infiltration had not been proved to be feasible as groundwater monitoring had not taken place in March and April 2023, when rainfall was much higher than when readings were taken - groundwater flooding had been experienced adjacent to the site in April 2023. I note that the drainage strategy still only refers to the groundwater monitoring from November 2022 to February 2023, indicating an identical depth of 590mm to the water table from November to January, which I have questioned previously. Further groundwater measurements are required to be taken, with borehole logs submitted as evidence of the actual depth to the water table/there will be adequate clearance for the permeable paving. It is being disputed that the high water table on the nearby allotment site is due to perched water, but this has not been proven.

ent would have stopped to take a photo of the site underwater (and in doing so, better proved their point and, walked a shorter distance). The EA manning for surface

From the evidence we have, we do not believe there is any groun

It is noted that soakage testing to BRE 365 has not been undertaken since November 2022, so further testing would be required to re-calculate the infiltration rate during wetter conditions. We have not been asked to retest for any other site in West Oxfordshire. Please can you confirm why it is needed here? Gravels underlie the site, the rate achieved by on-site testing is representative of gravels, are the soakage rate for gravel is unlikely to change. The previous testing was carried out at a time when groundwater levels were high, and in any case, our infiltration will be well above the groundwater level. Please

l also asked for a Groundwater Management Plan, to ensure that adjacent properties are not affected by s/w runoff during the construction phase. A request was made for it to subject to a pre-commencement condition, as it would be prepared by the groundworker who has not yet been appointed - although this could be agreed in principle, a viable drainage strategy would be required for me to remove my objection.

We understand you can allow this as a condition once you are happy with the wider strategy.

The method for this will need to be confirmed by the eventual contractor. But informally, we would expect the contractor to build the bunded area to the north first, then install well points around the foundations

and pump to the bunded area, in order to locally lower the groundwater level at the foundations (if this is needed)

A bund is now proposed around the north-western and south-western site boundaries, but there are concerns about this. It is noted the meadow (at the north-western end) is at a higher elevation than the proposed building. If a large water storage area is created by the bund (and I note an adjoining retaining wall at the south-eastern end), there will be no slow release of water from the site should it flood (it has been reported that the existing field does regularly flood), so water will either infiltrate in the ground and raise the groundwater level, flowing underground to Chapel Lane, or the bund would overtop and cause flooding to adjacent

on the local opposition to the site, if it regularly flooded, there would be photos. The water is currently infiltrated into the ground here. We are intending to match this. The amount of rain falling on the site will not change if there is a dwelling on it: the plan area used for infiltration will be essentially unchanged, and given the good hydraulic conductivity of gravels, we cannot see how the proposal will impact the wider area

The meadow is at typical levels of between 66.10 and 65.90 (yes, it rises to 66.66 at one point on the northwest boundary, where the bund tapers out, but this is not typical). The Bund is set at 66.30 (this is about the surrounding land, except for where the bund tapers out), and the FFL for the proposed property is at 66.50.

A 3D model of the existing meadow gives an exceedance storage of 357m3 within the bunded/walled area. The total site area is 2,700m2, so this accounts for 130mm of rainfall over the full site (assuming zero

infiltration into sub-surface gravel). This storage is over and above the 1 in 100-year storm, plus 40% already catered for; while we cannot say overlopping will never happen, we do not believe that it can, as the rainfall even would have to be many, many times that experienced in July 2007.

rd to the water leaving the site via infiltration into the sub-soil. The risks of this are realistically unchanged from an undeveloped site; the sub-soil is and has always been gravel. The area of the site is the same, and the rain falling on this area will be the same regardless of whether or not there is a dwelling on it. Would it help if we extended the bund to key further into the sub-soils? We cannot see the benefit of doing this, due to the connectivity of the underlying gravels, but it might help address the concerns of the local villagers?

ably, the rainwater harvesting we are now proposing will mean that less water will be infiltrating, as the recycled water will discharge to the foul. Thames Water have confirmed they have the capacity for the foul. Whilst we acknowledge the village has issues, Thames Water manages the foul water drainage and has a statutory duty to provide this capacity. Planning cannot be refused on the basis that a c regulated service provider is not believed to be fulfilling their duties, as to do so would set a very dangerous precedent indeed, as it could then be used to prevent development across the full WODE Lowlands Area, a significant proportion of which suffers from similar issues with Thames Water.

We would also note that the capacity and risk of groundwater flows have not been contested for other sites in the village, such as the current 23/02695/FUL on the Abingdon Road, with 2 houses draining to the

same adopted foul pumping station and draining via infiltration. Please can you confirm how the Chapel Lane site differs or is worse, as the foul flows will be less from Chapel Lane?

Due to the above concerns. I maintain my objection to development on this site.

Hopefully, the above and our earlier conversation address your concerns and will allow you to remove your objection. Our current design arguably provides a reduction in the risk of flooding to 3rd parties rather than an increase due to the rainwater harvesting and attenuation.

If you can accept the above, please let us know, and we will update our report to reflect this and add the additional testing currently being carried out.


All the best

Richard White

B.Sc (Hons) C.Env C.WEM I.Eng F.IHE MCIWEM Managing Director

Infrastruct CS Ltd Consulting Civil Engineers

ogges Farm, High Cogges, Witney, Oxon, OX29 6UN.

